If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2+7v=0
a = 2; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·2·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*2}=\frac{-14}{4} =-3+1/2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*2}=\frac{0}{4} =0 $
| (12x4)x4=12 | | 5.1=-4v+17.9 | | -11x+40=29 | | Y=-2x- | | -7.9=-3.1+w/3 | | 8y+28=3y+53 | | 5x+16=6x+14 | | 5x-4x-20=23 | | 3.50+x=8.50 | | 7(x+1)-3x=15 | | (3x-2)2=36 | | 4/5x+2/3=5/6x-4 | | X^2-28y+192=0 | | 32+13y=-7 | | 7x^2-36x=5 | | 2x+25=3x-5=180 | | |2x-6|=4x+4 | | b^2-17b+10=0 | | x^2−2x−25=58 | | –13=5+x | | /x2−2x−25=58 | | 2x+29=27-4 | | x2−2x−25=58 | | 8y-(2y+3)=11-y | | 63-3u/8-3u=-3u+9 | | 25(2x-1)^=225 | | -10+c=4 | | 16x-7x=8-5x | | A=72x35x2 | | 3x^-10=2x^+98 | | (2x-1)^=225 | | 9(x+4)=9x-4 |